設(shè)f(x)的一個(gè)原函數(shù)為cosx,g(x)的一個(gè)原函數(shù)為x2,則f[g(x)]等于:()
A.cosx2
B.-sinx2
C.cos2x
D.-sin2x
您可能感興趣的試卷
你可能感興趣的試題
設(shè)4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,則f(x)等于:()
A.(1+x)/(1-x)+c
B.(1-x)/(1+x)+c
C.1n|(1+x)/(1-x)|+c
D.1n|(1-x)/(1+x)|+c
不定積分[f′(x)/(1+[f(x)]2)]dx等于()
A.ln|1+f(x)|f+c
B.(1/2)1n|1+f2(x)|+c
C.arctanf(x)+c
D.(1/2)arctanf(x)+c
設(shè)一個(gè)三次函數(shù)的導(dǎo)數(shù)為x2-2x-8,則該函數(shù)的極大值與極小值的差是:()
A.-36
B.12
C.36
D.以上都不對
不定積分xf″(x)dx等于()
A.xf′(x)-f′(x)+c
B.xf′(x)-f(x)+c
C.xf′(x)+f′(x)+c
D.xf′(x)+f(x)+c
不定積分等于()
A.
B.-
C.2
D.-2
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
微分方程的含有任意常數(shù)的解是該微分方程的通解。
=()
設(shè)D是由不等式|x|+|y|≤1所確定的有界區(qū)域,則二重積分|x|dxdy的值是:()
閉區(qū)間上的間斷函數(shù)必?zé)o界。
設(shè)L是從A(1,0)到B(-1,2)的線段,則曲線積分(x+y)ds等于:()
單調(diào)函數(shù)的導(dǎo)函數(shù)也是單調(diào)函數(shù)。
點(diǎn)x=0是函數(shù)y=x4的()
下列各組函數(shù)中,是相同的函數(shù)的是()
函數(shù)在x=0處連續(xù),則a=()
若f(x)在[a,b]上可積,則f(x)在[a,b]上連續(xù)。