問答題
有常微分方程的初值問題,試用泰勒展開法,構(gòu)造線性兩步法數(shù)值計(jì)算公式
,使其具有二階精度,并推導(dǎo)其局部截?cái)嗾`差主項(xiàng)。
您可能感興趣的試卷
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
試證明線性二步法當(dāng)b≠-1時(shí)方法為二階,當(dāng)b=-1時(shí)方法為三階.
題型:?jiǎn)柎痤}
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
題型:?jiǎn)柎痤}
證明:△(fkgk)=fk△gk+gk+1△fk。
題型:?jiǎn)柎痤}
試導(dǎo)出計(jì)算的Newton迭代格式,使公式中(對(duì)xn)既無開方,又無除法運(yùn)算,并討論其收斂性。
題型:?jiǎn)柎痤}
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
題型:?jiǎn)柎痤}
正方形的邊長(zhǎng)約為100cm,則正方形的邊長(zhǎng)誤差限不超過()cm才能使其面積誤差不超過1cm2。
題型:填空題
當(dāng)f(x)=x時(shí),求證Bn(f,x)=x。
題型:?jiǎn)柎痤}
若用梯形公式計(jì)算,步長(zhǎng)h有無限制.
題型:?jiǎn)柎痤}
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
題型:?jiǎn)柎痤}