問答題

具有系數(shù)矩陣的方程組Ax=b,分別用Jacobi迭代法收斂而Gauss-Seidel迭代法求解,試用參數(shù)a,b應(yīng)當(dāng)滿足的條件表達(dá)兩種迭代法都收斂的充分必要條件(提示:求出兩種迭代矩陣的譜半徑,都含有參數(shù)a,b)


您可能感興趣的試卷

最新試題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計算出3個啟動值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長h=0.1,手工計算到x=0.5

題型:問答題

試求出如下m階三對角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。

題型:問答題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長h=0.02,計算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。

題型:問答題

試求出實(shí)對稱矩陣的所有特征值(視情況確定精確或近似特征值)。

題型:問答題

常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。

題型:填空題

寫出求解常微分方程初值問題,y(0)=2,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.2,手工計算到x=0.4。

題型:問答題

將下述變上限求積公式:化為等價的常數(shù)分非常初值問題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時的定積分值。

題型:問答題

試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。

題型:問答題

λi,λj是A的特征值

題型:問答題

常微分方程y″+16*y′+15*y=sin(2t+1),y(0)=α,y′(0)=β為()方程組。

題型:填空題