若,則sin2θ=()。
A.
B.
C.
D.
您可能感興趣的試卷
你可能感興趣的試題
A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實數的充分必要條件是z1、z2互為共軛復數
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數
設函數z=x2y,則等于()。
A.1
B.2
C.1+
D.2+
設三次多項式函數f(x)=ax2+bx2+cx+d滿足,則f(x)的極大值點為()。
A.O
B.1
C.-1
D.2
設,設有P2P1A=B,則P2等于()。
A.A
B.B
C.C
D.D
下列函數中,與函數定義域相同的函數為()。
A.A
B.B
C.C
D.D
最新試題
,(1)求An;(2)求(A+2E)n。
設f(x),g(x)在[a,b]上連續(xù),且滿足
一商家銷售某種商品的價格滿足關系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
求.
高中"方程的根與函數的零點"(第一節(jié)課)設定的教學目標如下:①通過對二次函數圖象的描繪,了解函數零點的概念,滲透由具體到抽象思想,領會函數零點與相應方程實數根之間的關系,②理解提出零點概念的作用,溝通函數與方程的關系。③通過對現實問題的分析,體會用函數系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關系。掌握函數零點存在性的判斷。完成下列任務:(1)根據教學目標,設計一個問題引入,并說明設計意圖;(2)根據教學目標①,設計問題鏈(至少包含三個問題),并說明設計意圖;(3)根據教學目標③,給出至少一個實例和三個問題,并說明設計意圖;(4)確定本節(jié)課的教學重點;(5)作為高中階段的基礎內容,其難點是什么?(6)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?
設f(x),g(x)在[0,1]上的導數連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W會納悶,今天老師上數學課怎么會念起古詩來?其實,這首詩隱含著一些數學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談談數學教學過程中怎樣調動學生的學習熱情激發(fā)學習興趣。
請簡要描述數學應用意識及推理能力的主要表現。
案例:某教師在對根與系數關系綜合運用教學時,給學生出了如下一道練習題:設α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學生的解答過程如下:利用一元二次方程根與系數的關系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數學思想方法。
如何處理面向全體學生與關注學生個體差異的關系?