案例:某教師在對根與系數(shù)關(guān)系綜合運用教學(xué)時,給學(xué)生出了如下一道練習(xí)題:
設(shè)α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。
A.
B.8
C.18
D.不存在
某學(xué)生的解答過程如下:
利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6
所以。故選A。
問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;
(2)給出你的正確解答;
(3)指出你在解題時運用的數(shù)學(xué)思想方法。
您可能感興趣的試卷
最新試題
請簡要描述數(shù)學(xué)應(yīng)用意識及推理能力的主要表現(xiàn)。
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
在高中數(shù)學(xué)課程中為什么要講微積分初步?
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
如何理解高中數(shù)學(xué)課程的過程性目標?
甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。
已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點D,從每條曲線上取兩個點,將其坐標記錄于下表中:(1)求C1、C2的標準方程:(2)請問是否存在直線L滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
論述實施合作學(xué)習(xí)應(yīng)注意的幾個問題。
請以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計。(1)教學(xué)目標;(2)教學(xué)重點、難點;(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計意圖。