單項(xiàng)選擇題

在直角三角形ABC中,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)P為線段CD的中點(diǎn),則()。

A.2
B.4
C.5
D.10


您可能感興趣的試卷

你可能感興趣的試題

2.單項(xiàng)選擇題

,則sin2θ=()。

A.
B.
C.
D.

3.單項(xiàng)選擇題下列命題中,假命題為()。

A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實(shí)數(shù)的充分必要條件是z1、z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1
D.對(duì)于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)

4.單項(xiàng)選擇題

設(shè)函數(shù)z=x2y,則等于()。

A.1
B.2
C.1+
D.2+

最新試題

請(qǐng)簡(jiǎn)要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。

題型:?jiǎn)柎痤}

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個(gè)根x1,x2滿足。(1)當(dāng)x∈(0,x1)時(shí),證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,證明。

題型:?jiǎn)柎痤}

案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過(guò)程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問(wèn)題:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

題型:?jiǎn)柎痤}

高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;②結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性;③以問(wèn)題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)至少兩個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計(jì)問(wèn)題鏈(至少包含兩個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(4)相對(duì)義務(wù)教育階段的統(tǒng)計(jì)教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:?jiǎn)柎痤}

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?

題型:?jiǎn)柎痤}

,(1)求An;(2)求(A+2E)n。

題型:?jiǎn)柎痤}

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項(xiàng)和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項(xiàng)和Tn。

題型:?jiǎn)柎痤}

如何理解高中數(shù)學(xué)課程的過(guò)程性目標(biāo)?

題型:?jiǎn)柎痤}

已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。

題型:?jiǎn)柎痤}

已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。

題型:?jiǎn)柎痤}