問答題在高中數(shù)學課程中為什么要講微積分初步?

您可能感興趣的試卷

你可能感興趣的試題

最新試題

案例:某教師在對根與系數(shù)關系綜合運用教學時,給學生出了如下一道練習題:設α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學生的解答過程如下:利用一元二次方程根與系數(shù)的關系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學思想方法。

題型:問答題

請以"直線與平面平行的判定"為課題,完成下列教學設計。(1)教學目標(2)本節(jié)課的教學重、難點(3)寫出新課引入和新知探究、鞏固、應用等及設計意圖

題型:問答題

求.

題型:問答題

請簡要描述數(shù)學應用意識及推理能力的主要表現(xiàn)。

題型:問答題

設f(x),g(x)在[0,1]上的導數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有

題型:問答題

高中"方程的根與函數(shù)的零點"(第一節(jié)課)設定的教學目標如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領會函數(shù)零點與相應方程實數(shù)根之間的關系,②理解提出零點概念的作用,溝通函數(shù)與方程的關系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關系。掌握函數(shù)零點存在性的判斷。完成下列任務:(1)根據(jù)教學目標,設計一個問題引入,并說明設計意圖;(2)根據(jù)教學目標①,設計問題鏈(至少包含三個問題),并說明設計意圖;(3)根據(jù)教學目標③,給出至少一個實例和三個問題,并說明設計意圖;(4)確定本節(jié)課的教學重點;(5)作為高中階段的基礎內(nèi)容,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關成功的概率;(2)設甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學期望。

題型:問答題

案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W會納悶,今天老師上數(shù)學課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談談數(shù)學教學過程中怎樣調(diào)動學生的學習熱情激發(fā)學習興趣。

題型:問答題

,(1)求An;(2)求(A+2E)n。

題型:問答題

高中"隨機抽樣"設定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據(jù)教學目標①,設計至少兩個問題,并說明設計意圖;(2)根據(jù)教學目標②,給出至少兩個實例,并說明設計意圖;(3)根據(jù)教學目標③,設計問題鏈(至少包含兩個問題),并說明設計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?

題型:問答題